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Knowledge about the biogeographic affinities of the world’s
tropical forests helps to better understand regional differences
in forest structure, diversity, composition, and dynamics. Such
understanding will enable anticipation of region-specific re-
sponses to global environmental change. Modern phylogenies,
in combination with broad coverage of species inventory data,
now allow for global biogeographic analyses that take species
evolutionary distance into account. Here we present a classification
of the world’s tropical forests based on their phylogenetic similar-
ity. We identify five principal floristic regions and their floristic
relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) Amer-
ican, and (v) Dry forests. Our results do not support the traditional
neo- versus paleotropical forest division but instead separate the
combined American and African forests from their Indo-Pacific
counterparts. We also find indications for the existence of a global
dry forest region, with representatives in America, Africa, Madagas-
car, and India. Additionally, a northern-hemisphere Subtropical for-
est region was identified with representatives in Asia and America,
providing support for a link between Asian and American northern-
hemisphere forests.

biogeographic legacies | forest classification | forest functional similarity |
phylogenetic community distance | tropical forests

The biogeographic origin of species, in combination with dis-
persal limitation and environmental filtering, are the princi-

pal determinants of spatial variation in the species composition
of tropical forests (1, 2). Despite evidence of long-distance dis-
persal (1, 3–5), tropical forests maintain conspicuous regional
differences in species composition. For example, only ∼4% of
tropical tree species are shared among Africa, America, and Asia
(6). The lack of species overlap among continents makes global
inference of relationships among tropical forests problematic,
because such classifications depend on comparison of the amount
of shared species. Therefore, pan-tropical biogeographic analyses
have been based on comparison of compositional patterns at
higher taxonomic levels, namely genus or family (6–8). However,
such analyses treat taxa as independent units, while in reality taxa
vary in their degree of phylogenetic relatedness and, as a con-
sequence, their morphological and ecological similarity (1, 2).
Taking phylogenetic relatedness into consideration enhances our
ability to delimit phytogeographical boundaries that characterize
functional and biogeographic affinities among forest regions (1,
2, 9, 10). Here we include phylogenetic relationships in a floristic
analysis to provide such insight.
We compiled a standardized dataset of old-growth tropical

forest inventories of angiosperm trees (trunk diameter ≥10 cm)
for 406 1° latitude/longitude grid cells (hereafter referred to as
“locations”) originally dominated by natural forests across the
(sub)tropics (Table S1). These locations represented all major
tropical forest regions and had broad environmental amplitude,
including low to high elevations and dry to wet forests (Fig. 1 and
Fig. S1). To determine the phylogenetic distance between loca-
tions, we constructed a dated phylogenetic tree that was resolved
to genus level and contained all taxa used for our classification
analyses (Dataset S1). Location pairwise phylogenetic distance
matrices were constructed using 20 randomly drawn tree taxa per
location. We used 20 taxa, as this maximized the number of lo-
cations that could be included in the classification analyses while
still providing a reliable classification result. In total, we gener-
ated 20 phylogenetic distance matrices, each with a different set
of 20 randomly drawn taxa per location, which served as input for
20 cluster analyses (Fig. S2). The final classification of each lo-
cation depended on the frequency with which it was classified in
a particular cluster across all 20 cluster analyses (Fig. S3). Re-
lationships between the clusters were represented by a majority
rule consensus tree (Fig. 1).

Results and Discussion
Mean pairwise phylogenetic distance analysis, which emphasizes
ancient lineages in phylogenetic community comparisons, de-
tected almost no spatial patterns in community phylogenetic
similarity across the tropics, indicating that all tropical forest
locations consist of more or less the same set of ancient plant
lineages. This is in accordance with recent findings that the
whole present-day tropics are dominated by similar high levels of
Late Cretaceous aged phylogenetic lineages (11). Only when we
used mean nearest taxon distance, which emphasizes recent
lineages in phylogenetic community comparisons, did we detect
clear spatial patterns across the tropics. Therefore, current-day
biogeographic patterns in the tropics seem to mainly reflect
Cenozoic speciation events when Gondwanan breakup was al-
ready well on its way.
Using the mean nearest taxon distance, our phylogenetic

cluster analyses showed that the world’s tropical forests are di-
vided into two major floristic regions: a combined American-
African versus Indo-Pacific region (Fig. 1). This division con-
tradicts previous hypotheses about major global realms, which
either recognized neo- versus paleotropical regions or several
separate continental regions (4, 12–14). However, Gentry (7)
already noted the high generic-level similarity of tropical
American and African forests. He attributed this to Cretaceous
and Cenozoic plate tectonic history (4, 15). Subsequent studies
have shown that despite the severing of direct land connections
between the African and South American plates ca. 96 Mya,
long-distance dispersal continued throughout the Late Creta-
ceous and Early Tertiary across the widening Atlantic Ocean (4,
5). The combined effect of shared origin with trans-Atlantic
migration may explain the detected connection between South
American and African forests.
Within the American-African cluster, the first split separated

the African from the American regions (Fig. 1), suggestive of the
west Gondwanan breakup associated with the formation of the
Atlantic Ocean and, over time, the increasing difficulty for plants
to disperse across the Atlantic (1, 15). Interestingly, the African
region showed the highest consistency in clustering of all five
identified floristic regions. On average, locations belonging to
the African region were assigned to this cluster in 91.4% of cases,
versus consistency values of 79.5, 63.7, 79.5, and 70.3% for the
Indo-Pacific, Subtropical, American, and Dry forest regions,
respectively. This clustering consistency indicates high floristic
similarity across tropical Africa, which is in accord with the rel-
atively low beta diversity observed for these forests (6). Postu-
lated repeated cycles of contraction and expansion of the tropical
African forests from a few small forest refugia in combination

Significance

Identifying and explaining regional differences in tropical for-
est dynamics, structure, diversity, and composition are critical
for anticipating region-specific responses to global environ-
mental change. Floristic classifications are of fundamental im-
portance for these efforts. Here we provide a global tropical
forest classification that is explicitly based on community
evolutionary similarity, resulting in identification of five major
tropical forest regions and their relationships: (i) Indo-Pacific,
(ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests.
African and American forests are grouped, reflecting their
former western Gondwanan connection, while Indo-Pacific
forests range from eastern Africa and Madagascar to Aus-
tralia and the Pacific. The connection between northern-
hemisphere Asian and American forests is confirmed, while
Dry forests are identified as a single tropical biome.
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with large-scale species shifts during the Pleistocene glaciations
may explain the relatively high compositional homogeneity of the
forests within the African region (16, 17).
The tropical American forests were further divided into moist

and dry forests (Fig. 1 and Fig. S1), indicating that this division is
primarily environmental (18). The American floristic region
comprises humid forests, including the lowland forests of Central
America, the Amazon basin, the Guianas, and the northern half
of the Atlantic forest. The Dry forest region encompasses the
Caatinga and Cerrado regions as well as other dry forests
throughout the Americas but interestingly, and contrary to the
nonphylogenetic pan-tropical analysis by Dexter et al. (8), also
includes dry forests of Africa, Madagascar, and India. Further
research is needed to confirm whether this indicates the exis-
tence of a global dry forest region with a shared biogeographic
origin, or whether selection for drought and fire resistance has
favored the dominance of similar plant lineages in tropical dry
forests around the world (8, 18, 19).
The Indo-Pacific floristic region occupies the humid areas of

eastern Africa, Madagascar, India, Southeast Asia, Australia,
and the Pacific Islands (Fig. 1). With the exception of SE Asia,
which is of Laurasian origin, this floristic region combines all
areas that once comprised eastern Gondwana (4, 15). Given the
diverse geologic history of Asia and the Indo-Pacific (20), it is
surprising to find a similar forest type covering most of the re-
gion. Nevertheless, there is strong evidence of significant plant
migration within this region that likely had a homogenizing ef-
fect, notably the biotic exchange between India and Southeast
Asia starting from ca. 45 Mya (21), and between Southeast Asia
and Australia, New Guinea, and the Pacific Islands that com-
menced ca. 15 Mya (4). The presence of Indo-Pacific forests in
eastern continental Africa may either reflect eastern Gondwanan
origin or dispersal within the Indo-Pacific region.

We also identified a group of locations in Asia and America
that occupies cooler climates and higher elevations relative to
the other identified forest clusters (Fig. 1 and Fig. S1), and which
we therefore termed the Subtropical region. This Subtropical
floristic region confirms the floristic link between Asia and North
America, reflecting a shared boreotropical affinity (22). Within
Asia, the Subtropical region is mostly restricted to the subtropics,
with the exception of high-elevation forests of Java. In the
Americas, by contrast, this floristic region extends from the
subtropics deep into the tropics, probably because the cooler
montane climate of the Central American highlands and South
American Andes has facilitated the southward migration of cold-
adapted plant lineages. The absence of continuous, North–
South-oriented mountain chains in Asia may have limited the
dispersal of such lineages into lower latitudes.

Conclusion
We provide a phylogenetic distance-based biogeographic classi-
fication of the world’s tropical forests, using the most extensive
sampling scheme for the tropics currently in existence. Our re-
sults uncover floristic patterns which will help in the develop-
ment of region-specific models for forest structure, diversity, and
dynamics as well as possible responses of tropical forest regions
to global environmental change. Our results may necessitate
reconsideration of established biogeographic ideas. For example,
Madagascar and New Guinea have often been considered two
separate major tropical regions, ecologically and biogeographically
distinct from tropical America, Africa, and Southeast Asia (23, 24).
However, despite their highly endemic species compositions, we
show that they are both part of the widespread Indo-Pacific floristic
region. Finally, our analysis can serve as a model for classifying
regional floras.

Materials and Methods
Tree Inventory Dataset. Individual angiosperm trees (diameter at breast
height ≥10 cm) from old-growth forest inventories throughout the (sub)tropics
(between −35°S and 35°N latitudes) were pooled within their respective
1° latitude/longitude grid cells (henceforth called locations). These
locations represented all major tropical forest regions and had broad envi-
ronmental amplitude, including low to high elevations and dry to wet for-
ests (Fig. S1). Monocots and Cactaceae were excluded because these were
not consistently surveyed in all datasets. This dataset originally included
439 locations containing 925,009 individual trees belonging to 15,012 taxa.
Species names were standardized using The Plant List (www.theplantlist.org),
Taxonomic Name Resolution Service (tnrs.iplantcollaborative.org/TNRSapp.
html), and Asian Plant Synonym Lookup (phylodiversity.net/fslik/synonym_
lookup.htm). On average, 1.4% of individual stems per location remained
unidentified. These unidentified individuals were excluded from further
analyses.

Community Phylogenetic Tree. The APG-III classification (25) served as the
family-level backbone of our community phylogenetic tree. Recent updates
in APG-IV (26) are mostly of nomenclatural nature and did not affect our
analyses. This tree was further resolved up to genus level using the species-
level phylogeny (32,223 species included) published by Zanne et al. (27),
which covered most genera in our dataset (Dataset S1). Genera present in
our dataset, but not in Zanne et al. (27), were placed at the base of their
respective families. Genera that had disjunct species occurrences in the
phylogeny of Zanne et al. (27) were placed at the most basal node con-
necting the disjunct species. This phylogeny was subsequently dated using
the BLADJ function in Phylocom v4.2 (28), using taxon ages given in
Magallón et al. (29) for the age file.

Phylogenetic Distance Analysis. Phylogenetic distance between all pairs of
locations was calculated using the options COMDIST and COMDISTNT in
Phylocom v4.2 (28). COMDIST uses the mean pairwise phylogenetic distance
(MPPD); for each taxon in a location, it finds the average phylogenetic dis-
tance to all taxa in the other location, and calculates the mean. COMDISTNT
uses the mean nearest taxon distance (MNTD); for each taxon in location 1, it
finds the nearest phylogenetic neighbor in location 2, records this, and
calculates the mean. Both functions return a symmetrical matrix of locations

A

B

C

D

American
Dry tropical
African
Indo-Pacific
Subtropical85

70
65

Fig. 1. Classification maps of the world’s tropical forests, showing two (A),
three (B), four (C), and five (D) clusters. Cluster result represents a majority
rule consensus tree, with the percentage of times that each grouping was
observed in the 20 separate cluster analyses shown in D. Only locations that
could be classified with certainty (P < 0.05) are shown (n = 392).
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versus locations with their pairwise phylogenetic distances. Principal co-
ordinate (PCO) analyses (in MultiVariate Statistical Package v3.13; Kovach
Computing Services) on resulting location versus location matrices showed
that the MPPD matrices had almost no explanatory power (generally the
first five PCO axes explained less than 5% of data variance), meaning that
detected patterns were mostly random. The MNTD matrices, however,
explained considerable amounts of data variance in the first five axes of the
PCO. Therefore, we used only MNTD for further analysis.

Correcting for Taxon Richness Bias in MNTD. Taxon richness differed consid-
erably between locations, varying between 4 and 1,466. MNTD may be
sensitive to such differences in taxon richness because the chance of finding a
close relative between two locations may increase when their taxon richness
increases. Applying MNTD to determine phylogenetic distance between lo-
cations with differing taxon numbers could therefore result in taxon-rich
locations being grouped together in the cluster analysis simply because they
are more taxon-rich. To determine the impact of this effect, we created five
“location-by-taxon” matrices, each with a lower number of taxa per loca-
tion (320, 160, 80, 40, and 20 taxa per location), using the 41 locations
containing more than 320 taxa. For each location, taxa were ranked
according to abundance, so that the location-by-taxon matrix based on, for
example, 320 taxa consisted only of the 320 most abundant taxa per lo-
cation. Where tied abundances exceeded the predefined number of taxa,
we randomly selected the appropriate number of taxa from among those
with tied minimum abundance. We then calculated the MNTD matrices for
each of these five location-by-taxon matrices and found that with in-
creasing taxon richness of locations, MNTD (as averaged over all locations)
decreased with increasing taxon richness per location following a power
function [y = 310.4x−0.194 (Fig. S4)], demonstrating that MNTD is indeed
sensitive to taxon richness.

Determining the Optimal Number of Taxa per Location for Further Analysis. To
avoid taxon richness bias when using MNTD, locations had to be compared
based on similar numbers of taxa. Minimum variance clustering, based on the
five location-by-taxon matrices described earlier, consistently recovered the
same major clusters in the same configuration (African and American loca-
tions clustered on one main branch and Asian locations clustered on the
other), although the relationships between locations within these main
clusters could vary (Fig. S5). Only in the 20-taxon analysis was one American
location (location no. 165 from the Brazilian Atlantic Forest) placed in the
Asian cluster. The amount of variance captured in the first five axes of a PCO
analysis (using the same MNTD matrices) declined by only ∼20%, from
83.3 to 60.7%, between the 320- and 20-taxon analyses, respectively. We
decided to use 20 taxa per location in the final analyses (Table S1) because of
this limited loss of information in the PCO and similarity of cluster results. In
addition, we were able to use most of our locations (406 of the initial 439),
including locations on remote islands and extreme habitats that would have
been excluded if we had set the minimum number of taxa too high.

Forest Classification Analyses. For the final analyses, we produced 20 location-
by-taxon datasets. In these datasets, each location was represented by
20 randomly drawn taxa (from that location). Random draws were irre-
spective of taxon abundance, as abundance is a spatially and temporally labile
taxon trait that likely reflects contemporary environmental conditions rather
than historical biogeographic signal. For each of these 20 location-by-taxon
datasets, we calculated the corresponding symmetrical location-by-location
matrices with their pairwise phylogenetic distances (MNTD). These matrices
were then used as input for cluster analyses.

Locations were grouped in clusters using Ward’s minimum variance method
(30), using MultiVariate Statistical Package v3.13. This is a centroid-based
clustering technique that identifies cluster centers (centroids) by minimizing
the overall squared distances of the objects (in this case locations) to the

centroids at each cluster level. This clustering technique identified spatially
clearly defined location groupings (Fig. S2). The optimal number of clusters
for defining floristic regions across the tropics was determined by calculating
the cophenetic correlation coefficient at each cluster level, starting at the
first split (K2) in the dendrogram. The cophenetic correlation coefficient
calculates the correlation between the distance of the clusters as calculated
by the clustering algorithm and the distance based on observed MNTD
values between clusters. The higher the cophenetic correlation, the better
the cluster result reflects the patterns present in the original distance matrix.
We applied this method to each of our 20 datasets, calculated the average
cophenetic correlation coefficient for each cluster level, and found a steep
increase in cophenetic correlation up to K5, after which it slowly declined
(Fig. S6). Therefore, we chose K5 as the optimum level for defining our main
floristic regions across the tropics.

For each location, at cluster level K5, we determined the cluster in which it
was classified for each of the 20 cluster analyses that we performed. The
location was then assigned to the cluster in which it had the highest pro-
portion of observations. A single proportion test (31), which calculates the
probability of an observed (sample) proportion (in the range 0 to 1) against
a hypothetical proportion, was then used to determine if the observed
proportions were significantly higher than expected by random [Paleonto-
logical Statistics (PAST) v3.08; https://folk.uio.no/ohammer/past/]. For exam-
ple, for K5, the expected random proportion of locations per cluster is 0.2.
For a sample size of 20, a proportion has to be at least 0.38 to be significantly
higher (P < 0.05) than the random expectation. The resulting classification
success rates of locations for K5 are shown in Fig. S3 and Table S1. The final
classification (K5) of the clusters was based on the majority consensus rule
(Fig. 1).
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